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Abstract
In robot navigation tasks, the representation of the surround-
ing world plays an important role, especially in reinforce-
ment learning approaches. This work presents a qualitative
representation of space consisting of the circular order of de-
tected landmarks and the relative position of walls towards
the agent’s moving direction. The use of this representa-
tion does not only empower the agent to learn a certain goal-
directed navigation strategy, but also facilitates reusing struc-
tural knowledge of the world at different locations within
the same environment. Furthermore, gained structural knowl-
edge can be separated, leading to a generally sensible naviga-
tion behavior that can be transferred to environments lacking
landmark information and/or totally unknown environments.

Introduction
In goal-directed navigation tasks, an autonomous moving
agent has solved its task when having reached a certain lo-
cation in space. Reinforcement Learning (RL) is frequently
applied to such tasks, because it allows an agent to au-
tonomously adapt its behavior to a given environment. It has
proven to be an effective approach especially in conditions
of uncertainty. However, in large and in continuous state
spaces RL methods require extremely long training times.

The navigating agent learns a strategy that will bring it
to the goal from every position within the world, that is: It
learns to select an action for every given observation of the
given environment. But usually this strategy cannot be trans-
ferred to other scenarios, because knowledge of the under-
lying structure of the state space is not explicitly acquired.
The agent lacks an understanding of geometrical spaces.

Thrun and Schwartz claim that it is necessary to discover
the structure of the world and abstract from its details to be
able to adapt RL to more complex tasks (Thrun & Schwartz
1995). Lane and Wilson argue that navigation tasks in a spa-
tial environment possess a certain structure, which proves to
be advantageous during the learning process (Lane & Wil-
son 2005). The aim of the approach we present in this paper
is to enable the agent to profit from this structure by using
an appropriate qualitative representation for it. While other
approaches often concentrate on the design of the agents’ ac-
tions or the internal representation of the value function, the
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approach presented in this paper applies abstraction directly
on the sensory data.

The first goal of this work is to provide a spatial rep-
resentation that leads to a small and discrete state space
which enables fast and robust learning of a navigation strate-
gy in a continuous, non-homogeneous world. The second
goal is to explicitly model structural elements of the envi-
ronment within this representation to enable the agent to
reuse learned strategies in structurally similar areas within
the same world and also being able to transfer learned strate-
gies to other, unknown environments.

This paper is organized as follows: First, we introduce
the robot navigation scenario used in this work. Then we
discuss different aspects of goal-directed navigation behav-
ior and introduce a qualitative representation of space con-
sisting of the relative position of detected landmarks and
surrounding line segments. In the following, experimental
results prove that the proposed representation induces fast
and stable learning of a policy that can also be transferred to
unknown environments. After an overview of related work,
this paper closes with a summary and an outlook.

The Navigation Task
The task considered within this work is a goal-directed nav-
igation task: An autonomous robot is requested to find a
certain location in a simplified office environment (see Fig-
ure 1). At the start of the experiment, the world is completely
unknown to the agent—no map is given and no other infor-
mation is provided. The agent is supposed to be capable
to determine unique landmarks around it to identify its loca-
tion. In our experimental setup this requirement is idealized:
The goal finding task takes place in a simulated environment
which consists of line segments that represent walls. It is
assumed that every wall is uniquely distinguishable, making
the whole wall a landmark of its own. To represent this, each
wall is considered to have a unique color.

The robot is capable of performing three different basic
actions: moving forward and turning a few degrees both to
the left and to the right. Both turns include a small forward
movement; and some noise is added to all actions. There
is no built-in collision avoidance or any other navigational
intelligence provided. The robot is assumed to be able to
perceive walls around it within a certain maximum range.
The goal of the agent is to “find” a certain location within
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Figure 1: The navigation task: a robot in a simplified simu-
lated office environment with uniquely distinguishable walls.
The lines departing from the robot visualize landmark scans.
Detected colors are depicted in the upper left. The label “–”
means that nothing was perceived within the agent’s scan-
ning range. The target location is the right dead end.

the environment and drive towards it.
The given scenario can be formalized as a Markov De-

cision Process (MDP) 〈S,A, T,R〉 with a continuous state
space S = {(x, y, θ), x, y ∈ R, θ ∈ [0, 2π)} where each sys-
tem state is given by the robot’s position (x, y) and an orien-
tation θ, an action space A consisting of the three basic ac-
tions described above, a transition function T : S×A×S →
[0, 1] denoting a probability distribution that the invocation
of an action a at a state swill result in a state s′, and a reward
function R : S → R, where a positive reward will be given
when a goal state s∗ ∈ S is reached and a negative one if the
agent collides with a wall. The goal of the learning process
within this MDP is to find an optimal policy π : S → A that
maximizes the reward the agent receives over time.

Applying reinforcement learning on this MDP is anything
but trivial. The state space is continuous, resulting in the
need to use function approximation to represent the value
function. Due to the inhomogeneity of the state space at
the position of walls, this approximation is crucial. Further-
more, the the pose of the agent is usually impossible to de-
tect correctly in realistic systems, and the state representa-
tion (x, y, θ) is not agent-centered: A learned policy for this
MDP will be worthless when applied to an environment that
is, e.g., just mirrored. The aim of this work is to find a rep-
resentation that enables to learn a policy that is applicable
to unknown environments as well, resulting in a generally
sensible spatial behavior. To achieve that, we concentrate
on the agent’s observation of the environment: A function
ψ : S → O assigns an observation o to every state s. This
results in a Partially Observable Markov Decision Process
(POMDP) 〈S,A,O, T,R〉 with O = {ψ(s), s ∈ S} being
the set of all possible observations in S. We now use this
POMDP to approximate the underlying MDP, i.e., we solve
the POMDP as if it was an MDP. The quality of the resulting
policies clearly depends on how closely ψ can represent the
structure of the underlying state space.

Due to the usually non-injective nature of ψ, the execution

of an action can result in the same observation o ∈ O be-
fore and after the action, which is not desirable when using
RL. To prevent this, we define a qualitative action behavior:
A qualitative action is a sequence of identical basic actions
a ∈ A that lead from a given observation to a different one,
i.e., a basic action is repeated as long as the observation re-
mains the same. LetAq be the set of qualitative actions, then
T (o, a, o) = 0 ∀o ∈ O, a ∈ Aq.

Representing General and Task-Specific
Spatial Knowledge

To achieve a valuable observation representation, we take a
closer look at the given problem. Navigation in space, as
performed in the learning examples, can be viewed as con-
sisting of two different aspects:

Goal-directed behavior towards a certain target location
depends highly on the task that has to be solved. If the task
is to go to a certain location, the resulting actions at a spe-
cific place are generally different for different targets. Goal-
directed behavior is task-specific. Generally sensible behav-
ior regarding the structure of the environment is more or less
the same in structurally similar environments. It does not de-
pend on a goal to reach, but on structural characteristics of
the environment that invoke some kind of behavior. Gener-
ally sensible behavior is task-independent. This distinction
closely relates to Konidaris’ concepts of problem-space and
agent-space (Konidaris 2006).

Both aspects are not completely independent: A generally
sensible spatial behavior does not need a target location, but
the other way round it is different: Reaching a target loca-
tion requires some sort of generally sensible navigation be-
havior (otherwise the target would not have been reached).
Put differently, knowledge of generally sensible navigation
behavior is a good foundation for developing goal-oriented
strategies. Thus, it is desirable to be able to extract this be-
havior from the strategy. The aim is to find a representation
that divides between the two aspects of navigation behavior
in order to be able to single out the general navigation know-
ledge in a reusable way.

To represent the necessary knowledge to achieve a goal-
directed behavior, we define a function ψa : S → Nn

which maps the agent’s position and orientation (x, y, θ)
to a circular order of perceived landmarks. In the given
setting this can be realized by the color information de-
tected at n discrete angles around it, resulting in a vector
c = ψa(s) = (c1, . . . , cn). Every physical state s ∈ S maps
to exactly one color vector c. This is a compact and discrete
qualitative abstraction of rich and continuous real world in-
formation.

The encoding of a circular order of perceived colors is suf-
ficient to approximately represent the position of the agent
within the world but it does not represent any information
about the agent’s position regarding the obstacles.

A Spatial Representation of Relative Position of
Line Segments
As a generally sensible behavior in office environments is
affected by the walls, which induce sensible paths inside the
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Figure 2: Neighboring regions around the robot in relation to
its moving direction. Note that the regions in the immediate
surroundings (b) are proper subsets of R1, . . . , R8 (a).

world, their whereabouts have to be taken into account. In
the following we describe a function ψb : S → Nn that
maps a system space to an extremely compact representation
of the relative positions of lines towards the agent’s moving
direction. For further reference, it is called RLPR (Relative
Line Position Representation).

To encode RLPR, we construct an enclosing box around
the robot and then extend the boundaries of this box to create
eight disjoint regions R1 to R8 (see Figure 2a). This repre-
sentation was proposed to model the movement of extended
objects in a qualitative manner (Mukerjee & Joe 1990). The
representation used in this work is a modified version of the
direction-relation matrix (Goyal & Egenhofer 2000). We
define a traversal status τ(B,Ri) of a line segment B re-
garding a region Ri as follows:

τ(B,Ri) =
{

1 B ∩Ri 6= ∅
0 else

(1)

τ(B,Ri) is 1 if a line B cuts region Ri and 0 if not. The
overall number of lines in a region Ri therefore is

τ(Ri) =
∑
B∈B

τ(B,Ri) (2)

with B being the set of all detected line segments.
For anticipatory navigation, it is particularly interesting

also to know where the walls lead to, i.e., which line seg-
ments span from one region to another. To additionally
encode this, we determine if a line B lies within counter-
clockwise adjacent regions Ri and Ri+1 (for R8, of course,
we need to consider R1):

τ ′(B,Ri) = τ(B,Ri) · τ(B,Ri+1) (3)

τ ′(B,Ri) is also very robust to noisy line detection, as it
does not matter if a line is detected as one or more segments.
The overall number of spanning line segments in a region,
τ ′(Ri), is derived analogously to (2). Figure 3 shows an
example situation.

Special care has to be taken on the immediate surround-
ings of the agent. The position of detected line segments is
interesting information to be used for general orientation and
mid-term planning, but obstacles in the immediate surround-
ings are to be avoided in the first place. So the representation
described above is used twice. On the one hand, there are the
regions R1, . . . , R8 that are bounded by the perceptual capa-
bilities of the robot. On the other hand, bounded subsets
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τ(R1) = 1 τ ′(R1) = 1
τ(R2) = 1 τ ′(R2) = 1
τ(R3) = 3 τ ′(R3) = 0
τ(R4) = 1 τ ′(R4) = 1
τ(R5) = 2 τ ′(R5) = 1
τ(R6) = 1 τ ′(R6) = 1
τ(R7) = 2 τ ′(R7) = 1
τ(R8) = 1 τ ′(R8) = 0

Figure 3: Example: RLPR values in an example situation.
Region R2 (right) and R4 (front) are marked.

of those regions represent the immediate surroundings (see
Figure 2b). The size of the grid defining the immediate sur-
roundings is given a-priori. It is a property of the robot and
depends on its size and system dynamics (e.g., speed).

For inducing an appropriate behavior in the immediate sur-
roundings (R9, . . .), it is sufficient to determine if there is an
object or not. So while regarding τ ′(Ri) for R1, . . . , R8, we
use τ(Ri) for the immediate surroundings. Also, the regions
in the back of the robot are omitted, because the agent can-
not move backwards:

ψb(s) = (τ ′(R1), . . . , τ ′(R6), τ(R9), . . . , τ(R13)) (4)

Often it is sufficient to distinguish if τ ′(Ri) or τ(Ri) equals
0 or not, resulting in ψ′b : S → {0, 1}n. For the experiments
in this work, we used ψ′b.

To combine knowledge about goal-directed and generally
sensible spatial behavior, we now build a feature vector
by concatenating the representation of detected colors and
RLPR (color-RLPR), so the observation space is

O = {(ψa(s), ψ′b(s))} (5)

This observation space is discrete. Its size |O| can be approx-
imated by an upper bound. Given the representation in (5)
and a number of 7 color scans, |O| ≤ (C + 1)7 · 211 with
C being the number of colors perceived. For C = 20, |O|
is bigger than 3 · 1012. However, a large number of theo-
retically possible combinations has no realization in the real
word. The RLPR part enhances the size by a factor of just
2048, independent of the size of the environment. While
learning the task in Figure 1 with color-RLPR, the agent en-
countered only about 550,000 different observations.

GRLPR: Generalizing RLPR
To achieve a generalizing behavior that abstracts from the
concrete landmark information and just considers the struc-
tural information given by RLPR, we apply the function ap-
proximation method of tile coding (Sutton 1996) to the rep-
resentation. We choose a tile size big enough that the whole
color space of N colors can fit within one tile, so that each
update of the policy affects all system states with the same
RLPR representation. We choose a tile size of 1 and make
sure that each color representation ci ∈ [0, 1) (i.e., the i-th
detected color ci is represented by i−1

N ). With this encod-
ing, all colors can be stored within one tile, and no function
approximation is applied to the RLPR part of the representa-
tion. To still be able to differentiate between different colors,
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Figure 4: Number of runs reaching the goal state: Both the
coordinate and the color-distance approach don’t show a sta-
ble and successful learning, while color-RLPR is both fast
and successful.

we also choose N tilings. As an effect, the agent can reuse
structural knowledge acquired within the same learning task.
Furthermore, the learned policy is immediately applicable to
new environments even if they are completely unknown and
no distinguishable landmarks are present in the new worlds
or none that have ever been perceived before. The only thing
to assure is that perceived colors in the new world are not as-
signed numbers that have been used in the training task. This
generalizing variant of RLPR is called Generalizing RLPR
(GRLPR).

Experimental Results
All experiments have been conducted using Watkins’ Q(λ)
algorithm (Watkins 1989). During training, the agent uses an
ε-greedy policy with ε = 0.15. This means, that at each time
step the agent performs a random action with a probability
of ε, otherwise it executes the action a which yields the high-
est rating according to Q(o, a) (o ∈ O, a ∈ A). A positive
reward is given when the agent reaches the target location,
a negative reward is given when the agent collides with a
wall. Test runs without random actions (and without learn-
ing) have been performed after every 100 training episodes.
A step size of α = 0.2, a discount factor of γ = 0.98, and
λ = 0.9 was used in all the trials. A learning episode ends
when the agent reaches the goal state, collides with a wall,
or after a certain number of actions.

Goal Finding Performance
In a first experiment, the robot has to solve the goal find-
ing task in the environment depicted in Figure 1. The agent
starts from 20 starting positions equally distributed inside
the corridors. We test color-RLPR and -GRLPR against a
color-only representation given by ψa only, and two non-
or semi-qualitative representations: First, a coordinate-only
representation of the original MDP with s = (x, y, θ), and
second, a color-distance representation consisting of the
color vector ψa(s) and a number of distance values to the
nearest obstacles acquired at n discrete angles around the
agent. The continuous parts of the state vectors are approxi-
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Figure 5: GRLPR shows a very fast learning especially in
the early training phase. The color-only approach does not
lead to a stable learning behavior.

mated using tile coding. As many different parameter values
(n, angular distance, number of tilings, size of tiles) have to
be tried for the metrical approaches, we only regard the best
performing combinations as representatives in this section.

Figure 4 compares the learning success of color-RLPR
and the color-distance and coordinate representation. With
color-RLPR, the agent reaches the goal after about 10,000
learning episodes and keeps a stable success rate afterward.
In contrast, both metrical approaches fail to show a stable
behavior and even fail to reach 100% success within the first
15,000 learning episodes. The coordinate based approach
learns fast in the beginning, but gets extremely unstable af-
terward. Generally, for both metrical approaches, depending
on the choice of parameters, the results are either unstable,
or stable, but unsuccessful.

Figure 5 shows the success graphs of the non-metric ap-
proaches. The color-only representation learns as fast as the
coordinate based approach, but is also comparably unstable,
even if slightly more successful. Due to the smaller observa-
tion space, it also shows a faster learning than color-RLPR
in the beginning. Color-GRLPR, however, learns faster than
the other two approaches in the early training phase. This in-
dicates that GRLPR benefits from its generalizing behavior
and empowers the agent to reuse structural spatial knowl-
edge gained in already visited parts of the environment. The
relatively long period of learning until reaching 100% can
be explained by the contradicting nature of the given envi-
ronment. From certain starting points, it is necessary to first
turn right and then turn left at the same type of intersection.
So if the agent once has learned to perform a certain action at
the first intersection, this strategy works against reaching the
goal at the second one, and further training effort is required
to cope with this contradiction1.

An important measure of the quality of navigation is the
number of collisions during training (see Table 1). Com-
pared to the coordinate and color-distance approach, this
number is reduced by more than 10% in training and about
50% in the test runs when using color-RLPR. Furthermore,

1This contradicting nature is also the reason why learning with-
out landmark information does not work in this world.



Collisions
Representation Training Test

coordinates 9635 2095
color-distance 10586 1800

color-RLPR 8513 1095
color-GRLPR 3986 424

color-only 21388 2385

Table 1: Number of collisions after two trials of 15,000
episodes: RLPR approaches show fewer collisions than the
metrical ones. Especially GRLPR reduces collisions signifi-
cantly.

color-GRLPR performs noticeably better than RLPR. This
indicates that the generalization ability leads to a sensible
navigation behavior rather early. Of course the color-only ap-
proach, that does not cope with distance notions at all, shows
the highest number of collisions.

Regarding the distance traveled to reach the goal is a hard
issue, because an optimal path cannot be determined. The
shortest path leads very close around corners and walls and,
due to noise and perceptual ambiguity, frequently results in
collisions. The system tries to balance out between a short
and a safe path, so the shortest path will (and shall) never be
learned. However, simulation trends show that the actions
needed to reach the goal continuously decrease over 250,000
runs when using color-RLPR or -GRLPR.

Summed up, the use of the proposed (G)RLPR represen-
tations shows a faster and more stable learning compared to
non- or semi-qualitative approaches and the number of col-
lisions is reduced significantly. Moreover, the RLPR based
approaches don’t require parameter fiddling.

Generalization Capabilities
To test the generalization abilities of a learned policy with
GRLPR, we must examine how the agent behaves when us-
ing the learned strategy in the absence of landmarks or in
an unknown world. The knowledge gained from the environ-
ment in Figure 1, however, is not too helpful to achieve a
generally sensible spatial behavior, because the goal is in a
dead end near a wall, and as a result (because states near the
goal have bigger impact) the agent learns to happily run into
any dead end and towards walls.

So the agent was trained in a more homogeneous envi-
ronment (see Figure 6, but note that also this environment
requires contradicting decisions at the same type of inter-
section). After learning with GRLPR for 40,000 episodes,
the landmark information is turned off, so that the agent per-
ceives the same (unknown) color vector regardless of where
it is. Figure 6 shows the resulting trajectories from 20 start-
ing positions, using the strategy that took the least number
of steps to the goal. The agent is able to navigate collision-
free and perform smooth curves, fully exploring the envi-
ronment. This generalized spatial strategy is acquired very
fast: After only 200 episodes of learning, a test run without
landmark information results in fairly smooth trajectories ex-
ploring all of the world, and collisions can be observed only

Figure 6: Trajectories of the agent in the same environ-
ment with no landmark information available. Learning was
performed using GRLPR. The small dots mark starting po-
sitions. The agent shows a sensible behavior and moves
smoothly and collision-free.

Figure 7: Trajectories of the agent in an unknown environ-
ment without landmarks, using the strategy learned in the
world depicted in Figure 6 with GRLPR.

when starting from 2 out of the 20 starting positions. The
learned policy can also successfully be transferred to abso-
lutely unknown environments. Figure 7 shows the agent’s
trajectories in a landmark-free world it has never seen be-
fore with different corridor angles and structural elements,
successfully following the strategy gained in the prior exper-
iment without any modification.

Finally, we show that the “outer” sectors of RLPR
(R1, . . . , R8) are essential for building a generalizing rep-
resentation. When just using the sectors in the immediate
surroundings (R9, . . . , R13) for building the observation, the
given goal-seeking task can be learned even faster than with
full RLPR. In the absence of landmarks within the same
world, however, the policy already fails. Because of the
missing structural information, the agent’s strategy restricts
to collision avoidance, resulting frequently in endless turn-
ings around itself. Moreover, the trajectories when driving
around curves are longer than with full RLPR.



Related Work
Much effort has been spent to accomplish improvements re-
garding the training speed of reinforcement learning in nav-
igation tasks, and consideration of the structure of the state
space has been found to be an important means to reach that
goal. Topological neighborhood relations can be used to im-
prove the learning performance (Braga & Araújo 2003), but
this approach requires an a-priori existence of a topological
map of the environment. Thrun and Schwartz tried to to
find reusable structural information that is valid in multiple
tasks (Thrun & Schwartz 1995). They introduced so-called
skills, which collapse a sequence of actions into one single
operation. Their algorithm can only generalize over separate
tasks, not over different states within the same one. Glaubius
et al. concentrate on the internal value-function represen-
tation to reuse experience across similar parts of the state
space. They use pre-defined equivalence classes to distin-
guish similar regions in the world (Glaubius, Namihira, &
Smart 2005). Lane and Wilson describe relational policies
for spatial environments and demonstrate significant learn-
ing improvements (Lane & Wilson 2005). However, their
approach runs into problems when non-homogeneities such
as walls and obstacles appear. To avoid that shortcoming,
they also suggest regarding the relative position of walls
with respect to the agent, but did not realize this approach
yet. Recent work by Mahadevan & Maggioni introduces a
method to autonomously construct basis functions for value
function approximation based on the structure and geometry
of the given problem (Mahadevan & Maggioni 2006). This
is a very beneficial approach for the task that is learned, but
in general the learned knowledge cannot be transferred to
different environments without further effort.

In a machine learning context a landmark based quali-
tative representation was used for example within a multi-
robot scenario (Busquets et al. 2002). The authors partition
the world into six circular sectors and store qualitative dis-
tance information for every landmark in every sector. For
navigation, however, they rely on rather complex actions,
and obstacle avoidance is handled by a separate component.

Conclusion and Outlook
Solving a goal-directed robot navigation task can be learned
with reinforcement learning using a qualitative spatial rep-
resentation purely using the ordering of landmarks and the
relative position of line segments towards the agent’s mov-
ing direction. The proposed representation generates a small
and discrete state space, even if the world is continuous. It
results in a fast and stable learning of the given task and out-
performs metrical approaches that rely on function approxi-
mation in learning success, speed, stability, and number of
collisions. It also reduces the number of parameters. Struc-
tural information within the environment is made part of the
state representation and can be reused within the same learn-
ing task, which facilitates a faster learning and reduces colli-
sions significantly. Furthermore, the use of GRLPR enables
to reuse knowledge gained in structurally similar parts of the
world and even permits to transfer the learned strategy di-
rectly to environments lacking landmark information and/or
totally unknown environments without further effort: The

agent learns not only a task-dependent strategy, but acquires
a generally sensible behavior in geometrical spaces. Differ-
ent aspects of spatial information (landmark-based goal di-
rected knowledge and structural knowledge about the world)
are clearly separated in the representation, permitting to only
regard one aspect of it.

Future work will show that the acquired strategy can be
used as background knowledge for new learning tasks in un-
known environments and therefore allows for speeding up
learning. We will also investigate how to learn two sepa-
rate policies for goal-oriented and generally sensible behav-
ior in a hierarchical learning architecture. Strategies learned
in simulation will also be ported to a real robot platform.
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