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Abstract. Navigation based on detected landmarks is an important facet of robot
navigation. This work investigates into a qualitative representation of landmarks
for an autonomous learning task where a robot learns a goal directed naviga-
tion strategy with reinforcement learning. We discuss how to build a suitable
landmark-based representation. In particular, we focus on selection of landmarks
to regard when experiencing a multitude of landmarks, because representing all
of them would blow up the state space inappropriately. Thus, we examine strate-
gies for this selection. Furthermore, we introduce a background knowledge based
structure-aware landmark selection mechanism to limit landmark observation to
the cases where it is really needed.

1 Introduction

Autonomous navigation of mobile robots is an important topic in the field of artificial
intelligence. Especially interesting are systems that are able to adapt their behaviors
to the needs of the given task and environment: Such a system learns a strategy on its
own. In this work we will study an approach utilizing Reinforcement Learning (RL) to
learn a strategy that allows a robot (the autonomous agent) to succeed in a goal-directed
navigation task: The agent is asked to drive to certain location from any position within
the environment. It learns to select an action for every given observation of the world.

In such large and continuous state spaces, RL methods require very long training
times. To successfully apply RL to this kind of tasks, an intelligent reduction of the
state space is an important prerequisite, and state space abstraction is a key issue to
that. In human spatial cognition landmarks are among the most important concepts.
Regarding the position of landmarks perceived in the local surroundings of a robot
instead of trying to estimate its metrical position within a global map has shown to be
successful in many approaches over the last years (e.g., [1,2]), especially when RL is
applied [3,4]. Regarding landmarks enables for building agent-centered representations
that are invariant of absolute orientation and can build comparably small state-spaces.

In this work, we present a method to specify the agent’s position by regarding or-
dering information of detected landmarks. In particular, we focus on the question how
to encode the locations of landmarks in a qualitative spatial representation especially
under the assumption of having a multitude of landmarks to cope with. A big number
of landmarks leads to high-dimensional representation vectors and blows up state space
and learning time. We present strategies to reduce the number of regarded landmarks
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to shrink the state space and enable faster learning of goal-directed strategies. Further-
more, we present a method to utilize background knowledge from structural spatial
information to restrict landmark adherence to cases in which it is really needed.

This paper is structured as follows: After an overview on related work in Section 2,
Section 3 introduces the learning task and the abstraction paradigm of landmark-
enhanced RLPR. Section 4 discusses how to cope with a a multitude of detected land-
mark and examines landmark selection strategies, including the background knowledge
based SDALS mechanism for landmark omission. An experimental evaluation is given
in Section 5, followed by a discussion of the results in Section 6 and a conclusion.

2 Related Work

Landmarks play a prominent role in many approaches to robot navigation, for example
in the work by Lazanas and Latombe [2] or Prescott [5], who describes relations be-
tween landmarks. While these approaches use metrical information, there exist quite a
few qualitative approaches to landmark based navigation. An early approach that totally
omits metrical measurements and just considers qualitative environment information is
the QUALNAV algorithm [1]. It uses ordering information of detected landmarks to
approximately encode the robot’s position, but, as pointed out by Schlieder [6], it is
partly based on wrong assumptions about the robot’s position. To cure the problems
having arisen in QUALNAV, the so-called panorama approach [6] has been introduced.
The panorama consists of the circular order of detected landmarks plus a set of virtual
landmarks that arise by point reflection of each landmark by 180°. However, building
up the panorama representation requires very exact metrical sensory information re-
garding the angles. Qualitative abstraction is especially valuable when the size of the
state space plays an important role, as in reinforcement learning approaches. Busquets
et al., for example, successfully utilize fuzzy qualitative information about relations and
distances of landmarks in a RL setting [3].

3 A Landmark-Based Spatial Representation

3.1 A Goal Directed Robot Navigation Task

The scenario considered in this work is a simulated indoor navigation task where an
autonomous robot learns to find a specified location in an unknown environment, the
goal state. This can be formalized as a Markov Decision Process (MDP) 〈S,A, T, R〉
with a continuous state space S = {(x, y, θ), x, y ∈ R, θ ∈ [0, 2π)} where each system
state is given by the robot’s position (x, y) and an orientation θ, an action space A of
navigational actions the agent can perform, a transition function T : S×A×S → [0, 1]
denoting a probability distribution that the invocation of action a at state s will result in
state s′, and a reward function R : S → R, where a positive reward will be given when
a goal state s∗ ∈ S is reached and a negative one if the agent collides with a wall. The
goal of the learning process within this MDP is to find an optimal policy π : S → A
that maximizes the reward the agent receives over time.
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To avoid the problems a continuous state space introduces we consider the agent’s
observation instead of S, using a function ψ : S → O that assigns an observation o to
every state s. This results in a Partially Observable Markov Decision Process (POMDP)
〈S,A,O, T, R〉 with O = {ψ(s)|s ∈ S} being the set of all possible observations in
S. We now use this POMDP to approximate the underlying MDP, i.e., we solve the
POMDP as if it was an MDP. The used function ψ is introduced in Section 3.2.

The robot is assumed to be able to perceive walls around it within a certain maximum
range. It is capable of performing three different actions: moving forward and turning a
few degrees both to the left and to the right. There is no built-in collision avoidance or
any other navigational intelligence provided.

3.2 Qualitative State Space Abstraction

The next two paragraphs shortly introduce the landmark-enhanced Relative Line Po-
sition Representation (landmark-enhanced RLPR) as presented in [4]. RLPR performs
abstraction directly and only on the state space representation and creates a very small
and discrete state space. It has been shown that this representation outperforms coordi-
nate- and distance based representations regarding robustness and learning speed.

The key idea behind RLPR is to divide each state into two separate parts which re-
present two different aspects of goal-directed agent navigation. Goal-directed behavior
towards a certain target location depends on the position of the agent within the world,
which can ideally be encoded with the help of landmarks. Generally sensible behavior
regarding the structure of the world is the same at structurally similar places within and
across environments. In contrast to goal-directed behavior it is independent of the goal-
finding task to solve. This distinction closely relates to the concepts of problem-space
(goal-directed behavior) and agent-space (generally sensible behavior) [7].

We now create a bipartite observation vector ψ(s) = (ψl(s), ψr(s)) where ψl(s)
denotes the problem space representation and ψr(s) the agent space representation. We
will first shortly introduce how to represent the latter one.

Representing Agent Space. RLPR is designed to encode agent-space for generally
sensible behavior. It benefits from the background knowledge that the structuring ele-
ments for navigation inside of buildings are walls, which induce sensible paths inside
the world which the agent is supposed to follow.

RLPR is a qualitative spatial abstraction of real world sensory data. It encodes the
position of line segments perceived by the the agent’s sensory system relative to its mov-
ing direction. The space around the agent is partitioned into bounded and unbounded
regions Ri (see Fig. 1). Two functions τ : N → {0, 1} and τ ′ : N → {0, 1} are de-
fined: τ(i) denotes whether there is a line segment detected within a sectorRi and τ ′(i)
denotes whether a line spans from a neighboring sector Ri+1 to Ri.
τ i is used for bounded sectors in the immediate vicinity of the agent (R9 to R13 in

Fig. 1(b)). Objects that appear there have to be avoided in the first place. The position
of detected line segments in R1 to R8 (Fig. 1(a)) is interesting information to be used
for general orientation and mid-term planning, so τ ′ is used for R1 to R8.

Summed up, the agent space representation ψr(s) is defined as

ψr(s) = (τ ′(R1), . . . , τ ′(R6), τ (R9), . . . , τ(R13)) (1)



Representing and Selecting Landmarks in Autonomous Learning 491

1

2

345

6

7 8 1

2

345

6

7 8

9

101112

13

(a) (b)

Fig. 1. RLPR: Neighboring regions around the robot in relation to its moving direction. Note that
the regions in the immediate surroundings (b) are proper subsets of R1, . . . , R8 (a).

Fig. 2. Six sectors around the robot. One landmark is detected in sector 2, three in sector 3, and
two in sector 5.

Representing Problem Space. In [4], problem space is encoded by a vector of uniquely
identified walls around the agent, represented by a certain color. It is a very strong as-
sumption that all walls can be correctly identified. Thus, we now investigate how prob-
lem space can be represented using point-based landmarks.

3.3 Representing Point Based Landmarks

At any point in time, the agent is surrounded by a varying number of detected land-
marks. Each landmark b has a certain distance db to the agent and an angle φi towards
its moving direction. The sequence (d1, φ1), . . . , (dn, φn) of n detected landmarks ex-
actly describes the position of the agent in an egocentric frame of reference. That is, ev-
ery sequence (d1, φ1), . . . , (dn, φn) maps to exactly one position (x, y, θ) of the agent.
However, the state space is still continuous, and very similar states (that is, positions
that are very close to each other) still have a different, yet overly exact representation.

To abstract from this differences we aim at providing a qualitative representation that
roughly encodes the whereabouts of landmarks with respect to the agent and its mov-
ing direction. Around the robot we partition the space into circular sectors with equal
angular size (see Fig. 2). The space in the back of the robot can remain unconsidered.
Every landmark that is detected by the sensory system of the agent can now be mapped
to exactly one sector in the plane (or none, if it is detected in the back). In the scope of
this work, we use eight sectors ranging from -140° to 140°.
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4 Selecting from Multiple Landmarks

When using a partition as described in the previous section we end up with a set of
landmarks for each sector. The size of each of these sets corresponds to the number of
landmarks detected in this sector. Let us say that we partition the world into n ∈ N

sectors and ki (1 ≤ i ≤ n) landmarks are detected in each sector i, ki ≥ 0. So we
create a sequence of n sets:

ψl(s) = (L1, L2, . . . , Ln) , Li = li1 , li2 , . . . , liki
(2)

with lij being detected landmarks in sector Li. For the case of ki = 0 (that is: no
landmark is detected in sector i), Li = ∅. Note that each landmark can map to exactly
one sector, such that lij = li′

j′
only holds if i = i′ and j = j′.

In theory, a set Li can become arbitrarily large. In malicious environments it may
contain all landmarks available in the world, but even in “normal” scenarios the number
of landmarks in one sector can be higher than just a few in certain cases. The biggest
problem of arbitrary lengths of the input set is that representations with many landmarks
within one sector will not carry too much information anymore, as representations with
slight variations within Li will most likely not correspond to very different locations
within the world, but to locations very close to each other. So we end up with an ar-
bitrarily big number of different state representations for very similar situations—and
that is exactly what we want to avoid, as this blows up the state space dramatically.

Let us look at an example: Fig. 3 shows a world with different distributions of land-
marks, ranging from a small to a very high number of landmarks, and also one world
with landmarks only at intersection points. We now take a look at the learning success

Fig. 3. Four environments with different distribution of landmarks, represented by dots: few land-
marks (top left), many landmarks (top right), landmarks placed only at intersections (bottom left),
and and absurdly high number of landmarks distributed all over the place (bottom right). The goal
area is marked in all environments.
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when applying RL with landmark-enhanced RLPR as introduced in Section 3 to learn
to navigate from starting positions all over the world to the marked goal area.

For all the experiments within this work we used Watkins’ Q(λ) algorithm [8]. Dur-
ing training, the agent uses an ε-greedy policy with ε = 0.15 for exploration, that is,
at each time step the agent performs a random action with a probability of ε, otherwise
it executes the action a which yields the highest rating according to Q(o, a) (o ∈ O,
a ∈ A). A positive reward is given when the agent reaches the target location, a negative
reward is given when the agent collides with a wall. Test runs without random actions
(and without learning) have been performed after every 100 training episodes. A step
size of α = 0.2, a discount factor of γ = 0.98, and λ = 0.9 was used in all the trials.

Success graphs of this experiment are shown in Fig. 4. Learning success critically
depends on the number of landmarks—the more there are, the longer learning times are
observed. With few landmarks the learning performance is extremely good. In particular
it gets obvious that landmarks only at intersections are sufficient to succeed in the task.
For the huge number of landmarks in the fourth world, a stable success rate of 100%
has not been reached yet even after 50,000 learning episodes.

We will now investigate what to do if the number of detected landmarks is too big
for high-performance learning. A solution to this problem is a stronger abstraction. We
claim that a certain maximal amount of landmarks is sufficient for encoding the position
of the agent. We reach this goal by applying an aspectualization on Li, that is, we omit
certain elements of Li. A set Li is abstracted to a set L′

i ⊆ Li with |L′
i| ≤ |Li| and

|L′
i| ≤ lmax with lmax ∈ N being the maximal number of landmarks we allow to be

represented within a sector.

4.1 Strategies for Landmark Selection

Several possibilities exist to realize this aspectualization. In the following we will in-
vestigate some strategies to decide which landmarks to choose and which to drop from
the state representation. We call the sequence L1, . . . , Ln the original observation and
L′

1, . . . , L
′
n the reduced observation.

Random Landmark Selection. The easiest way of selecting a subset of detected land-
marks in a sector is to choose the landmarks by random. This approach ensures a
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maximal number of n · lmax landmarks within the feature vector. However, all combina-
tions of landmarks are equally distributed with respect to the frequency of observation.
For example, if we perceive one configuration of k landmarks within a sector i from one
and the same position, we will experience

(
k

lmax

)
different observationsLi at this position

over time. If k > lmax for a larger number of states, then random landmark selection will
most probably even increase the state space, making the strategy counterproductive.

Known Landmarks First. Another drawback of random landmark selection is that
every landmark is treated equally, regardless of its relevance for the navigation process.
Instead it would be beneficial to regard the “important” landmarks only by preferring
landmarks that have been perceived in an earlier episode. This prevents the inclusion
of rarely observed landmarks. However, after some time, a significantly high percen-
tage of landmarks will be known and this method will converge to random landmark
selection. Furthermore, the success of this method is hard to predict and depending on
the environment. Summed up, the success of this approach is doubtful, and its effect
imponderable, so the use of the “known landmark first” approach is discouraged.

Close Landmarks First. Alternatively, we could prefer those landmarks with the
smallest distance to the robot. In contrast to the “known landmarks first” strategy the
relevance of landmarks for being regarded in landmark selection now depends on the
location of the robot. This inhibits the effect that a landmark is overseen just because too
many known landmarks are around—the landmark will become a selection candidate
as soon as the robot approaches it. Another important advantage of this strategy is that
it establishes a unique mapping within the observation function, that is, each position
of the robot is mapped to exactly one reduced observation: ∀ (x, y, θ)∃1 L

′
1, . . . , L

′
n.

4.2 SDALS: Structural Analysis for Landmark Selection

If we again take a lot at the “landmarks at intersects” curve in Fig. 4, it is obvious that
only a few landmarks are sufficient, as long as they are appropriately located. In this
case, the landmarks are exclusively located at corridor intersections. We call these lo-
cations decision points. If there is no decision to take, for example in a corridor, the
structural information of the walls—the agent space—is sufficient to decide how to
navigate. It does not matter to know which corridor the agent is exactly in to learn
an appropriate action: going forward until the next intersection. Thus, landmark infor-
mation is not necessary there. Furthermore, we gain a generalization effect, because
structurally identical locations now share the same observation.

We now present a landmark selection approach called Structural Decision Aware
Landmark Selection (SDALS). The main idea of SDALS is to ignore any problem space
information at states that require unique actions because of agent space. In our case,
landmark information is omitted when the structure of the surrounding walls alone trig-
gers a certain action, for example, to go left when reaching the wall at a left turn.

RLPR (see Section 3.2) offers a unique possibility to distinguish structurally differ-
ent states, that is, it subsumes locations with the same corridor structure (for example,
a right turn) under the same RLPR values ψr(s). To identify RLPR representations
that require a unique action, we rely on background knowledge from an earlier learn-
ing task. It is possible to derive a generalized strategy π′ with a Q-function Qπ′ that
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Fig. 5. Left: Comparison of “close landmarks first” vs. “all landmarks”. Especially for low values
of lmax, “close landmarks first” shows a significant improvement. Right: Effect of the SDALS
approach: After a very strong first learning phase, the learning progress disappears.

operates just on RLPR values o′ = ψr(s) derived from policies learned with landmark-
enhanced RLPR [9]. This generalized strategy works in any environment, regardless of
the concrete task to solve and delivers a generally sensible navigation action for any
state. Furthermore it is possible to derive a confidence value conf(o′) for any RLPR
representation o′ = ψr(s) [9]:

conf(o′) =

{
1

|A|
∑

a∈A(maxb∈A(Qπ′(o′, b)) −Qπ′(o′, a)) Qπ′(o′, a) �= 0 ∀a ∈ A
0 else

In other words, conf(o′) is a measure for an RLPR observation o′ of how “certain” the
policy is in choosing the best action according to the Q-values.

We now choose a set D of RLPR observations with the highest confidence values
from a generalized strategy of a prior experiment.D contains those RLPR observations
where one action is most strongly preferred over the other according their Q-values.
States with this RLPR information are no decision points. SDALS utilizes this infor-
mation to build a reduced observation ψs(s) by ignoring landmark information at any
state s where ψr(s) ∈ D:

ψs(s) =

{
(ψl(s), ψr(s)) if ψr(s) /∈ D

(∅, ψr(s)) else

SDALS only regards landmarks at places that have not shown unique decisions accord-
ing to their RLPR representations in prior runs. This shrinks the state space effectively.

5 Experimental Evaluation

In this section we test the landmark selection strategies presented before. We concen-
trate on the scenario with the huge number of landmarks (Fig. 3). As expected, random
landmark selection and “known landmarks first” do not show learning progress after
50,000 episodes in a scenario with this amount of landmarks.
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Fig. 5 (left) shows the success of the “close landmarks first” strategy: It leads to a
significant improvement in learning speed. While the “all landmarks” representation
does not reach a stable success rate of 100% after 50,000 learning episodes, “known
landmark first” manages to do so after about 25,000 (lmax = 1) or 38,000 episodes
(lmax = 2). For lmax = 3 the strategy shows a rapid learning in the early phase, but con-
verges slower towards 100% success. Summed up, one landmark per sector is perfectly
enough to fulfill the task when using “close landmarks first”.

First tests reveal that SDALS provides a rapid learning improvement in the early
learning phase, boosting the success to 30% and more after about only 5,000 episodes—
that is better than any other selection strategy. The reason for this is the generalization
effect: Structurally identical locations are subsumed under one single representation.
Also, the number of the agent’s collisions during training is reduced by more than 30%
with SDALS, and in contrast to other strategies, the robot shows a negligible number of
collisions in learned policies very early. However, after the strong early learning phase
the learning performance shows very slow progress (see Fig.5 (right)).

6 Discussion

A thorough analysis of the SDALS experiments reveals that the agent learns a collision-
free navigation strategy very fast, but fails to take the right decision to perform the last
turn before reaching the goal state. It turns out that this area is very poorly explored,
many states at the important turning point (the crossing) remain almost unvisited. The
reason is that the robot mostly takes more or less identical ways through the corridors
which he passes through without noticing landmarks thanks to SDALS.

So the generalizing effect of SDALS that enables a rapid learning of a generally sen-
sible navigation behavior and high success rates in the early learning phase obviously
leads into the exploration-exploitation dilemma. The bad performance of the other land-
mark selection strategies results in a higher exploration at decision points and the agent
gathers knowledge which can be utilized later. SDALS, however, gets stuck in gener-
ally good, but not goal-oriented navigation patterns, and the simple ε-greedy exploration
does not compensate this.

For this reason we need a better exploration behavior especially at the changeover
between decision points and non-decision points. These places can easily be detected
by SDALS. Future work has to investigate into that. Also it should be considered to
abstract from Q-values (where the confidence values base on) and regard the actions
emerging from them instead.

In general, too much knowledge is not always beneficial. Detecting more landmarks
than needed requires a selection strategy, and it turns out that, when chosen appropri-
ately, one landmark per sector is perfectly enough for the task at hand.

7 Conclusion

In this work we showed how a complex goal-directed robot navigation task in a con-
tinuous state space can be learned fast and efficient with the help of spatial abstraction.
Detected landmarks can be represented qualitatively by sorting them to a circular order
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of sectors around the robot. This allows for a suitable representation of problem space.
In cases where too much landmarks are observed the choice of the landmark with the
lowest distance to the robot shows being an efficient strategy for landmark selection.

The SDALS approach enables the agent to only consider landmarks when a decision
has to be made. It is based on a structural analysis of generalized background data from
previous tasks. At the current state of work, no 100% success in solving the goal finding
task can be achieved yet. However, SDALS enables for a rapid early learning success
and acquisition of a collision-free navigation very fast.
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