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Abstract

In robot navigation tasks, the representation
of knowledge of the surrounding world plays
an important role, especially in reinforcement
learning approaches. This work presents a
qualitative representation of space that em-
powers an agent to learn a goal-directed nav-
igation strategy based on structural knowl-
edge of the world that leads to a generally sen-
sible navigation behavior that can be trans-
ferred to completely unknown environments.

1. Introduction

In goal-directed navigation tasks, an autonomous mov-
ing agent has fulfilled its mission when having reached
a certain location in space. Reinforcement Learning
(RL) is frequently applied to such tasks, because it al-
lows an agent to autonomously adapt its behavior to
a given environment. However, in large and in contin-
uous state spaces RL methods require extremely long
training times.

The navigating agent learns a strategy that will bring
it to the goal from every position within the world,
that is: it learns to select an action for every given
observation of the environment. But what has the
agent really learned about the world it operates in?
Can it use the acquired knowledge at different loca-
tions in this environment or even in an unknown one?
This depends heavily on the chosen spatial representa-
tion of the world that is passed to the learning system.
In the worst case, all the collected knowledge can be-
come useless. For example, when the agent operates
in a different environment, a completely new set of ac-
tion selections may be necessary, and the agent has to
learn everything again from scratch, including collision
avoidance strategies. The agent lacks an understand-
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ing of the general structure of geometrical spaces.

Thrun and Schwartz (1995) claim that it is necessary
to discover the structure of the world and abstract
from its details to be able to adapt RL to more complex
tasks. The aim of the approach I present in this pa-
per is to enable the agent to profit from this structure
by using an appropriate qualitative representation for
it. Qualitative spatial representations provide an in-
terface that is based on human spatial concepts. They
are an expressive means of representing the relations
among features in geometrical space. I claim that this
way of representing structural spatial information can
enable the agent to develop a generally sensible be-
havior in space that it can reuse at different locations
within the same world and can also be transferred to
learning tasks in other, unknown environments. The
use of this representation will also support the learning
process by speeding it up and making it more robust.

Much effort has been spent to accomplish improve-
ments regarding the training speed of reinforcement
learning in navigation tasks, and consideration of the
structure of the state space has been found to be an
important means to reach that goal. Topological neigh-
borhood relations can be used to improve the learn-
ing performance (Braga & Araújo, 2003). Thrun and
Schwartz (1995) tried to find reusable structural infor-
mation that is valid in multiple tasks. Glaubius et al.
(2005) concentrate on the internal value-function rep-
resentation to reuse experience across similar parts of
the state space, using pre-defined equivalence classes.
Lane and Wilson (2005) describe relational policies
for spatial environments and demonstrate significant
learning improvements. To avoid problems with walls,
they also suggest regarding the relative position of
walls with respect to the agent, but did not realize
this approach yet.

The first goal of this work is to find a spatial represen-
tation that leads to a small and discrete state space
which enables fast and robust learning of a naviga-
tion strategy in a continuous, non-homogeneous world.
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The second goal is to extract structural knowledge
from the environment to enable the agent to reuse
learned strategies in similar areas within the same
world and also being able to transfer this knowledge
to other, unknown environments.

2. Navigation solely on the basis of
ordering of landmarks

The task considered within this work is a simple goal-
directed navigation task: an autonomous robot is re-
quested to find a certain wall in a simulated simplified
office environment completely unknown to the agent
(see Figure 1). The robot is supposed to be capable to
determine landmarks around it to identify its location.
It is assumed that every wall is uniquely distinguish-
able, making the whole wall a landmark of its own. To
represent this, each wall is considered to have a certain
color.
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Figure 1. The task: a robot in a simplified simulated office
environment with uniquely distinguishable walls. Detected
colors are depicted in the upper left, with labels attached
marking the corresponding walls.

The robot is capable of performing three different basic
actions: moving forward and turning a few degrees
both to the left and to the right. Each basic action
is repeated as long as the perception vector remains
the same. There is no built-in collision avoidance or
any other navigational intelligence provided. A small
amount of noise is added to the motor actions.

The agent uses a compact qualitative abstraction of
real world information: the colors perceived at 7 dis-
crete angles around it, a vector c = (c1, . . . , cn). Every
physical state, a tuple (x, θ) of the robot’s position
x and orientation θ, maps to exactly one color vec-
tor c. This mapping is not injective: multiple physi-
cal states share the same representation. The encod-
ing of a circular order of perceived colors is sufficient
to approximately represent the position of the agent
within the world and to derive a sequence of actions
to reach the goal. However, it is not sufficient to pre-

vent the robot from collisions. As stated above, the
mapping from physical locations to the state represen-
tation is not unique, and, given the same system input,
the consequences of an action can differ dramatically.
Performing the same action at the same system state
will sometimes result in a collision and sometimes not,
which prevents from retrieving a proper rating for this
state-action pair. The representation used so far does
not encode any information about the agent’s position
regarding the obstacles. It does not support the agent
in developing a generally sensible spatial behavior that
should also emerge in the absence of landmarks.

3. (G)RLPR: a spatial representation
of relative position of line segments

Navigation in space, as performed in the learning ex-
amples, can be viewed as consisting of two different
aspects: (1) Goal-directed behavior towards a certain
target location depends highly on the task that has to
be solved. If the task is to go to a certain location, the
resulting actions at a specific place are generally differ-
ent for different targets. Goal-directed behavior is task-
specific. (2) Generally sensible behavior regarding the
structure of the environment is more or less the same
in identical or similar environments. A generally sensi-
ble behavior in indoor office environments for example
would be not to crash into walls, turn around corners
smoothly etc. It does not depend on a goal to reach,
but on characteristics of the environment that invoke
some kind of behavior. Generally sensible behavior is
task-independent. The aim is to find a representation
that divides between the two aspects of navigation be-
havior in order to be able to extract generally sensible
behavior from a learned strategy.

The relations of walls towards each other induce sensi-
ble paths inside the world which the agent should learn
to follow. I propose a representation of the relative po-
sitions of lines towards the agent’s moving direction.
For further reference, it is called RLPR (Relative Line
Position Representation). RLPR is intentionally cho-
sen to be extremely compact while being very expres-
sive to be added to an existing feature vector.

To encode the relative positions of certain entities re-
garding the agent’s position and orientation, we con-
struct an enclosing box around the robot and then ex-
tend the boundaries of this box to create eight disjoint
regions R1 to R8 (see Figure 2a). This representation
was proposed to model the movement of extended ob-
jects in a qualitative manner (Mukerjee & Joe, 1990)
and is closely related to the direction-relation matrix
(Goyal & Egenhofer, 2000). We can define a traversal
status t(B,Ri) of each line B regarding a region Ri as
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Figure 2. Neighboring regions around the robot in relation
to its moving direction. The regions in the immediate sur-
roundings (b) are proper subsets of R1, . . . , R8 (a).

follows: t(B,Ri) = 1 if a line B cuts region Ri and 0
if not. The total number of lines in a region Ri is

t(Ri) =
∑
B∈B

t(B,Ri) (1)

with B being the set of all detected line segments.

For navigation purposes, it is particularly interesting
to know which line segments span from one region to
another. A corridor with a left turn, for example, will
have connected line segments in all the right and front
sectors, but none in freely traversable space. To addi-
tionally encode that a line segment B spans from one
sector to another, we determine if a line B lies within
counter-clockwise adjacent regions Ri and Ri+1 (for
R8, of course, we need to consider R1):

t′(B,Ri) = t(B,Ri) · t(B,Ri+1) (2)

t′(B,Ri) is also very robust to noisy line detection, as
it does not matter if a line is detected as one or more
segments. The total number of spanning line segments
in a region, t′(Ri), is derived analogously to (1).

To achieve a valuable representation of the environ-
ment, special care has to be taken on the immediate
surroundings of the agent. The position of detected
line segments is interesting information to be used for
general orientation and mid-term planning. Addition-
ally, if an object is detected in the immediate surround-
ings, this information refers to obstacle avoidance and
requires a prompt reaction. It can also be utilized to
realize certain behaviors, for example, a wall following
strategy. For regarding the regions near the agent, the
representation described above is used twice. On the
one hand, there are the regions R1, . . . , R8 that are
bounded by the perceptual capabilities of the robot.
One the other hand, bounded subsets of those regions
represent the immediate surroundings (see Figure 2b).

To combine knowledge about goal-directed and gener-
ally sensible spatial behavior, we now build a feature
vector by concatenating the representation of detected
colors and RLPR. A system state s is represented as

s = (c0 . . . cn, t′(R1) . . . t′(R8), t(R9) . . . t(R13)) (3)

Within the immediate surroundings, the information
of spanning line segments is not that important, so
t(Ri) is used instead of t′(Ri) for i ≥ 9.

In the following I want to show that while learning
a goal-directed navigation task with a clearly speci-
fied target location the agent can also learn a sensible
behavior regarding the structure of the surrounding
world independent of landmark information when us-
ing RLPR. Therefore, the generalization abilities of
tile coding (Sutton, 1996) are used in the value func-
tion representation over the complete range of color
information. This means that an update of the policy
affects all system states with the same RLPR repre-
sentation. This generalizing variant of RLPR is called
Generalizing RLPR (GRLPR). As an effect, the agent
can reuse knowledge acquired within the same learning
task. The learned strategy is also applicable to new en-
vironments that are completely unknown to the agent.

4. Experimental results

All experiments have been conducted using Watkins’
Q(λ) algorithm. In a first experiment, the robot has
to solve the goal finding task in the world depicted
in Figure 1. When using only (c1, . . . , c7) as the input
(“pure” approach), no robust learning behavior can be
achieved. In contrast, the additional use of RLPR or
GRLPR leads to stable learning: after about 10,000
episodes, almost all of the test runs reach the goal.

Figure 3 compares the “pure” approach with RLPR
and GRLPR during the first 15,000 episodes. Due to
the non-generalizing behavior and the larger feature
vector compared to the “pure” approach, RLPR shows
a slower learning in the very beginning, but gets compa-
rably successful as GRLPR over time. GRLPR learns
faster than the other two approaches in the early train-
ing phase. It benefits from its generalizing behavior
that empowers it to reuse structural spatial knowledge
gained in other parts of the environment.

An important measure of the quality of navigation is
the number of collisions that occur during training.
This number is reduced significantly with the addi-
tional line position representations (see Table 1). In
particular, GRLPR performs noticeably better than
RLPR. This indicates that the generalization ability
leads to a sensible navigation behavior rather early.

To show that the learned knowledge of the structure
of the world is not only beneficial within the same
learning task, we must examine how the agent behaves
when using the learned strategy in the absence of land-
marks or in an unknown world. After learning with
GRLPR for 40,000 episodes, the landmark information
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Figure 3. Number of runs reaching the goal state: GRLPR
learns faster than the “pure” approach. RLPR is slower
in the beginning, but catches up quite fast. Without
(G)RLPR, no stable learning can be achieved.

Table 1. Number of collisions after 15,000 episodes

Repr. Training Test

pure 21388 2385
RLPR 11316 1200

GRLPR 7929 596

is turned off, so that the agent perceives the same (un-
known) color vector regardless of where it is. As a
result, the agent is still able to navigate collision-free
and perform smooth curves, even without receiving
any landmark information. Most of the time it uses a
follow-the-wall strategy, a commonly-used strategy in
robotics. The learned strategy can also successfully be
transferred to absolutely unknown environments. Fig-
ure 4 shows the agent’s trajectories in a landmark-free
world it has never seen before, using the gained knowl-
edge from the prior experiment.

5. Conclusion and outlook

Solving a goal-directed robot navigation task can be
learned with reinforcement learning using a qualita-
tive spatial representation purely using the ordering of
landmarks and the relative position of line segments.
The proposed representation results in a fast and sta-
ble learning of the given task. Structural informa-
tion within the environment is generalized and can be
reused within the same learning task, which leads to a
generally sensible navigation strategy that facilitates a
faster learning and reduces collisions significantly. Fur-
thermore, the learned knowledge can be transferred to
environments lacking landmark information and/or to-
tally unknown environments: the agent learns a gener-
ally sensible behavior in geometrical spaces.

In future work it has to be shown that the acquired

Figure 4. Trajectories of the agent in an unknown environ-
ment without landmarks, using the strategy learned in a
different world with GRLPR.

strategy, used as background knowledge, can speed up
new learning tasks in unknown environments. Also
other methods of evaluating structural knowledge, e.g.,
in a hierarchical manner, need to be investigated.
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